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Abstract

Some simplifications of Schaffer's girth and perimeter of the unit spheres are introduced. Their
general properties are discussed, and they are used to study the lp, Lp spaces, uniformly non-
square spaces, and their isomorphic classes.
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1. Introduction

Let X be a normed linear space, and let

S(X) = {xeX: ||;t|| = 1}

be the unit sphere of X. In a series of papers, Schaffer made use of the
concept of geodesic to study the unit spheres S(X) (see [10] for the complete
references). He introduced the following two notations:

m(X) = inf{(5(jc, -x): x e S(X)},

and
M{X) = sup{<J(x, - x ) : x e S(X)},

where d(x, -x) is the shortest length of the arcs joining antipodal points x,
-x in S(X). He called 2m (X) the girth, and 2M(X) the perimeter of X.
These parameters, especially m(X), were used to study the L\ spaces [8],
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C(K) spaces [7, 9], reflexivity [6, 11] and isomorphism of Banach spaces
[10].

Except for the L\ spaces, C{K) spaces and Hilbert spaces, the values of
the girths and perimeters and difficult to obtain. In [3, 4], Gao considered a
simplification of such a concept; he denned the distance of antipodal points
x and -x on S{X) as

a(x) = inf lmaxflb - x| | , \\y + x\\}:ye

and

g(X)=inf{a(x):xeS{X)},

G{X)= sup{a(x):xeS(X)}.

He also denned another function of x and -x on S(X) as

P(x) = sup[min{||y - x\\, \\y + x\\}: y e

and

We will call 2g(X), 2G(X), {2j{X),2J{X)) the a-girth and a-perimeter {0-
girth, P-perimeter, respectively). Gao then demonstrated the relationships
of the above notations, and calculated the values of his girths and perime-
ters for certain two dimensions spaces, L\ spaces and C(K) spaces analo-
gous to Schaffer [10] (for example g{L{) = G(L{) = 1, j(Lx) = J(LX) = 2;
g((C(K)) = 1, and G(C(K)) = j((C(K)) = J(C(K)) = 2).

In this paper, we will continue the above investigation, we obtain the values
of the a, /?-girths and perimeters for lp, Lp spaces, and uniformly nonsquare
spaces. A relation with the modulus of convexity is also proved. Let the
distance of two isomorphic normed linear spaces X, Y be defined as

A(X, Y) = inf{ln||r|| • | |7 ' - I | | : T: X -» Y is an isomorphism},

we will make use of the above girths of lp, Lp to obtain bounds for A(lp,X)
(or &(LP,X)) so that X is uniformly nonsquare. The application to normal
structure will be considered in a forthcoming paper [13].

Our paper is organized as follows. In Section 2, we give some fundamental
properties and relationships of the a, p-girths and perimeters. These concepts
will be illustrated by some two dimensional normed linear spaces. Some of
the results in this section have appeared in [3, 4], we include the simplified
proofs here for the sake of completeness and the unavailability of an English
translation.
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In Section 3, we find out the a, /?-girths for the special spaces mentioned
previously. In Section 4, we use the above girths to study the isomorphic
classes of the lp, Lp spaces.

2. Basic properties

Let X2 be a two dimensional linear space. For x 6 S(X2), let K be one
of the arcs of S(X2) fr°m x to —x, a n d l e t 8'- [0,L] —• K be the standard
representation in terms of arc lengths, where L is the length of K.

LEMMA 2.1. The functions 4>, y/: [0,L] -> [0,2] defined by <f>(s) = \\g(s) -
x\\, ij/(s) = \\g{s)+x\\ are continuously increasing, and decreasing respectively.
Moreover, the two curves intersects at only one point.

PROOF. The first assertion follows from [10, Theorem 4F]. To prove the
second assertion, it is clear that the two curves will meet. We have to show
that they intersect at only one point. Assume the contrary, by the monotonic-
ity of (j> and y/, there exists 0 < s\ < s2< L such that

\\g(Si) - x \ \ = \\g(sj) + x \ \ f o r i,j = 1,2.

Let >>,, z, be the normalization of g(Sj) -x, g(Sj) +x, i = 1,2, then all these six
points are on K, and the segments [yi;>>2]> [g{s\)\g{si)], [zi,z2] are parallel.
The convexity of the unit sphere implies that they are collinear and hence
yi — g(sd - x, zi = g(Sj) + JC, / = 1,2. It follows that

which is a contradiction.

LEMMA 2.2. Let x e S(X2) and let a = a(x), then
(i) There exists aye S(X2) such that \\y - x\\ — \\y + x\\. Moreover, such

y is unique, and the above common value equals a.
(ii) Let p = (y- x)/a. Then p e S(X2) and a(p) = 2/a.
(iii) a(x) = P{x).

REMARK. In general, these conclusions may not hold if dim X > 2.

PROOF, (i) It follows directly from Lemma 2.1 and the definition of a(x).
(ii) Let y be as in (i), let

y -x y + x
P = —^> Q = —^>
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then p,q e S(X2). Consider the triangles determined respectively by -x, x,
y and p, q, 0, it is clear that

\\P\\ ~\\p-9\\'

that is,

A similar argument on the triangles determined by -y, y, x and -p, q, 0
yields

It follows from (i) that

a(p) = \\p-q\\ = \\p + q\\ = l.

(iii) We need only observe that the y obtained in (i) also satisfies

\\y-x\\ = \\y + x\\ =

COROLLARY 2.3. g{X2) = j(X2),G{X2) = J(X2).

PROOF. By Lemma 2.2(iii).

THEOREM 2.4. Let X be a normed linear space, then

g(X) < G(X) < J(X), g(X) < j{X) < J(X).

PROOF. It is clear that g(X) < G(X). Let x e S(X). For any two dimen-
sional subspaces X2 containing x,

where a^2, Px2 denote the a and fi for X2. Hence G(X) < J(X). The second
part of the inequality can be obtained similarly.

We remark that there is no inequality between G(X) and j(X) in general
(for example, see Theorem 3.1 (iii), and Theorem 3.2(ii)).

THEOREM 2.5. Let Xbea normed linear, then 1 < g(X) <V2< J{X) < 2
and g(X)J(X) = 2.

PROOF. It follows directly from the definition that 1 < g{X) and J{X) < 2.
Let x e S(X) and let X2 be a two dimensional subspace containing x. Let
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p € S(X2) be denned as in Lemma 2.2, then ax2{x) • aXl{p) — 2. Without
loss of generality, we can assume that ax2(x) ^ >/2, then

g(X)<a(x)<aX2(x)<V2,

J(X) > fi(p) > f}Xl{p) = aX2(p) > V2.

To prove the last equality, we let a = g(X), P = J{X). For any e > 0, let
x,y e S(X) be such that

Apply Lemma 2.2(iii) to the subspace X2 spanned by x, y, we can find p e
S(X2) such that

-^— < *x2(p) = Px2{p) < P.

This implies that 2 < a • /?. On the other hand, for any e > 0, we can choose
x',y'eS(X) such that

By applying the same argument as above, we have a • /J < 2. This completes
the proof that g(X) • J{X) = 2.

In the rest of this section, we will consider some special two dimensional
normed linear spaces. In [3, 4], Gao proved

PROPOSITION 2.6. S{X2) is affinely homeomorphic to a parallelogram if and
only ifg{X2) = 1. In this case, j(X2) = 1 and G(X2) = J(X2) = 2.

PROPOSITION 2.7. IfS{X2) is affinely homeomorphic to a hexagon and has
e as one of its vertices, then g{X2) = j(X2) = 4/3, and fi{e) = G{X2) =
J(X2) = 3/2.

PROPOSITION 2.8. IfS{X2) is affinely homeomorphic to a convex symmetric
body in the two dimensional Euclidean space R2 which is invariant under a
rotation of 45°, then g(X) = G{X) = j(X) = J(X) = y/2.

REMARK. A circle or an octagon will satisfy the above condition.

PROOF. Let 5(^2) be in R2 such that it is invariant under a rotation of
45°. Let x € S(X2), and let X\, X2, X3 be on the arc of S(X2) in the coun-
terclockwise direction so that the consecutive vectors x, x\, X2, x-} form 45°
angles. A rotation of 90° implies
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and hence these numbers equal a(x) be Lemma 2.2(i). Also a rotation of 45°
implies that

a(*3) = \\x3 ± xx || = ||*2 ± *|| = a{x).

and hence by Lemma 2.2(ii),

a2(x) = a(x)a(x3) = 2.

Since this is true for all x € S{X2), g(X) = J(X) = VI.
It is easy to see that if X is an inner product space, then for any fixed

A>0,

x,y € s(X), \\x + Xy\\ = \\x - Xy\\ => ||* + Xyf = \\x\\2 + X2\\y\\2 = 1 + A2.

In [12] Borwein and Keener asked whether the existence of such X implies
that X is an inner product space. We answer this question negatively: Let X
be a two dimensional space where S{X) equals the octagon as in the Remark
after Proposition 2.8, and let X — 1. The above condition is satisfied by
observing that for any x,y € S{X), ||JC + y|| = ||x - y\\ implies that their
common value is \fl.

3. Special spaces

Let lp, Lp[0,1] = Lp, 1 < p < oo, be defined as in the usual sense. We will
evaluate the values of their a and P girths and a and /? perimeters.

THEOREM 3.1. Let p,q > 1 be such that l/p + 1/q = 1.
(i) For 2 < p < oo. g(lp) = j{lp) = G(lp) = 21/?, J(lp) = 2l'«.
(ii) For 1 < p < 2, g(lp) = 2»/«, j(lp) = G{lp) = J(lp) - 21/*.
(iii) sC/oo) = ;(/oo) = 1, G(/oo) = /(/oo) = 2.

PROOF, (i) We will prove: for 2 < p < oo,

(3.1) 2'/" < g(lp), j{lp)<2'lP and G{lp) < 21/",

then Theorem 2.4 and Theorem 2.5 will imply the result. Recall the Clarkson
inequality [1,2] that when p > 2, x,y e X,

(3.2) 2(||x||' + ||y|n < ||* + y\\> + \\x-y\\" < 2"-1(||xf + \\y\f).

Hence for x,y e S(lp), p>2,

22<\\x + y\\P + \\x-y\\P.

This implies that 2{IP < a{x). Since x e S(lp) is arbitrary, we have 2X>P <
l
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For the second inequality of (3.1), we let ei = (1,0 ,0 , . . . ) . For any y e
(yu...,yn,...)eS(lp),ifyi > 0, then

Wy-eM = (1 -y<f + f > f < 1 + f > f = 2.
i=2 i=l

Similarly if yx < 0, then \\y+e\ \\" < 2. In either case, we have j{lp) < fi{e\) <

To prove G(lp) < 2l/p, we let x = (xux2,...) e S(lp). For any e > 0 such
that (1 + e)p < 1 + 2pe. There exists JV such that \XN\ < e. Let y — e^, then

| |JC±>' | | P < 2 + 2/?e.

This implies that

Since e and x are arbitrary, we have G(lp) <2l/p.
(ii) We need only show that

2l/p<G(lp), / ( / , ) < 2'/" and

The argument is the same as in (i), the corresponding Clarkson inequality we
use is: for 1 < p < 2, x,y € X

\\x + y\\p + \\x-y\\p<2(\\x\\p + \\y\n

(iii) It is clear that g(l<x>) = 1- That j{loo) < 1 follows from the same
proof as in (i). To show that G(/oo) > 2, we let x = (1 ,1 , . . . ) , then for any
y € S(loo), either \\x + y\\ = 2 or \\x - y\\ = 2. This implies that a(x) = 2,
and hence G(/oo) > 2.

THEOREM 3.2. Let p,q > 1 be such that l/p+l/q = 1, then
(i) For 2 < p < oo, s(Lp) = G(LP) = 2X<P, j{Lp) - J{LP) = 2l/«.
(ii) For\<p<2, g(Lp) = G(LP) = 2l/«, j{Lp) = J(LP) = 2 ' / ' .
(iii) s(Loo) = 1, j ^ ) = G(Loo) = J(Loo) - 2.

PROOF, (i) If suffices to prove the following inequalities as in Theorem
3.1:

2l'p<j(Lp), J(LP)<21'« and G(LP) < 2xlp.

Let x € S(LP), there exists a e [0,1] such that

fa\x{t)\pdt = \.
Jo *

Let y e Lp be denned as

'-(t), 0<t<a,
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Then ||j>|| = 1 and

\\y - x\\" = 2" [ \x(t)\»dt = 2P-i,
Ja

It follows from Lemma 2.2(i), (iii) that 2xlq < fi{x). Since x is arbitrary, we
have 2l/q < j(Lp). The second inequality follows from the second part of
Clarkson inequality (3.2) in the proof of Theorem 3.1(i).

To prove that G{LP) < 2llp, we let x € S(LP). For any e > 0 such that
(1 + e)p < 1 + 2pe, we can find 6 > 0 with

s
\x(t)\p dt < e.

Let z e LD be defined as-p

if 0 < t < 8,

Then

\ 0, otherwise.

\\Z±X\\P <2 + 2pe1/p.

This implies that a(x) < (2 + 2pel/p)l/P. Since x and e are arbitrary, we have
G(LP) < 21/".

(ii) The proof is similar to the proof of Theorem 3.1(ii).
(iii) It is easy to show that g(Loo) = 1 by considering the two dimensional

subspace span by #,1/2] and X(i/2,o]» where XA is the indicator function on A.
To show that ./(Loo) = 2, we can find, for any x e S(Ax>) and e > 0, and
a e ( 0 , 1 ) such that

esssup{x(0: t € [0,a]} = esssup{x(<): t e [a, 1]} = 1 - e

then proceed to construct the y as in (i). To show that G(Loo) = 2, we can
adopt the same proof as in Theorem 3.1 (iii).

To conclude this section, we will obtain the values J(X) for the uniformly
convex spaces and the uniformly nonsquare spaces.

A normed linear space X is called uniformly convex if for any 0 < e < 2,
there exists S(e) > 0 such that for x,y e S{X) with ||JC - y\\ > e, then
\\x + y\\ <2-2S{e). Let

S0(e) = i n f { i - $ \ \ x + y\\:x,ye S(X), \\x - y \ \ > e}.

It is clear that X is uniformly convex if and only if SQ(e) > 0.
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THEOREM 3.3. IfX is a normed linear space, then

= s\ip{e:e<2-2S0{e)}.

PROOF. Let

e0 = sup{e: e < 2 - 2S0{e)},

then 0 < Co < 2. For any //o, e > 0 such that e = eo + »o < 2, we have

2 - 2do(e) < e.

Let x,y e S(X), then either | | j ; - x\\ < e, or \\y - x\\ > e. In the latter case,
we have

\\y + x\\<2-2do(e)<e.
Hence we conclude that 0(x) < e. Since x and no are arbitrary, we have
J(X) < e0.

On the other hand, let >/o > 0, and let e = €Q — no, then there exists
x,y e S(X) such that \\x - y\\ > e, and

that is
\\x + y\\ > 2 - 2S0(e - 2n0.

This implies that

P(x)>mm{\\y-xl\\y + x\\}
> min{e, 2 - 2S0(e) - 2t]0}

> min{e,e-2?/o}

= e0 - 2>/o-

Since % is arbitrary, we have

J(X) > P{x) > e0.

A normed linear space is called uniformly nonsquare [5] if there exists a
8 > 0 such that x,y e S(X), either

i - * or | | i(x

THEOREM 3.4. X « uniformly nonsquare if and only ifJ(X) < 2.

PROOF. Suppose X is uniformly nonsquare. Let S be as in the definition,
then for x,yeS(X)

mm{\\y-x\\,\\y + x\\}<2-2d,
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and hence J(X) < 2. Conversely, let S > 0 satisfy J{X) <2-d. Then the
definition of J{X) implies that the above 3 will satisfy the condition in the
definition of uniformly nonsquare.

4. Isomorphism

Let X, Y be normed linear spaces and let T: X —* Y be an isomorphism.
Following the notation of Schaffer [10], we define dT: S{X) -• S(Y) by

It is clear that dT is a bijection. The following lemma is analogous to [10,
5M].

LEMMA 4.1. Let T: X -* Y be an isomorphism, then for any x,yy e S(X),

! < W(dT)y-(dT)X\\ + 2
| |r->||- ILV-JCH + 2

PROOF. For any x,y € S(X)

\\(dT)y - (dT)x\\ < \\(dT)y - Hr-'IK^II + || II^'IITO - ll^"1 \\(Tx)
+ \\\\T-l\\Tx-(dT)x\\

Solving for | |r | | • \\T~l|| yields the second inequality. The first inequality can
be obtained by observing the symmetric role for (dT)~l.

THEOREM 4.2. Let T: X —• Y be an isomorphism on the normed linear
spaces X and Y, then

1 — / V\ i *1

IIT—1 II

The same inequalities also hold if g is replaced by G, j or J.

PROOF. Let g(X) = a. For any e > 0, there exists x,y €. S{X) such that

Then by Lemma 4.1,
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This implies that
g(Y) + 2 < \\T\\ • ||!Z"— *|| • (a + 2),

that is

jj$^<\\T\\-\\T-l\\.

The other inequality can be obtained by interchanging the role of X,Y.
The proofs for the other three parameters are identical with this.
Let J b e a given normed linear space and let X be the class of spaces

isomorphic to X. We define a pseudo metric A o n I as: For Y,Z e X

A(Y,Z) = inf{ln||r|| • ||y~*||: T is an isomorphism from Y onto Z}.

THEOREM 4.3. Let p,q > 1 be such that l/p + l/q = 1. If X is a normed
linear space such that either

(i) A(X, lp) < In yj/ - , 2<p<oo,

or

A —, Kp<2,

holds, then X is uniformly nonsquare.

PROOF. We will consider case (i) only, the second case is similar. Note
that Theorem 4.2 implies that

2 <

In order that J(X) be uniformly nonsquare, it is necessary and sufficient that
J{X) < 2 (Theorem 3.4). This is the case if

that is

A(AT,/J,)<ln(5IJLI).

THEOREM 4.4. The above theorem is also true iflp is replaced by Lp.
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